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 Motivation
- The PCM: Fundamentals & Implementation

» Tests: comparison to pQCD minijet calculations
» Application: Reaction Dynamics @ RHIC, v,
- Outlook & Plans for the Future



Transport Theory at RHIC

hadronic phase

QGP and
initial state hydrodynamic expansion ] an.d fr?eze-oout.

pre-equilibrium hadronization

CYM & LGT

PCM & clust. hadronization

NFD

NFD & hadronic TM

string & hadronic TM

PCM & hadronic TM




provide a microscopic space-time description of
relativistic heavy-ion collisions based on perturbative

- discover novel phenomena associated with the collective
behaviour of highly compressed and/or heated QCD matter

* map the route to kinetic and chemical equilibration from a
partonic initial state to a Quark-Gluon-Plasma

- identify probes of the partonic phase

* prepare the ground for a study of hadronization and comparison
to hadronic observables

- provide initial conditions for other model calculations, e.g.
hydrodynamics or hadronic cascades



- degrees of freedom: quarks and gluons
- classical trajectories in phase space (with relativistic kinematics)

- initial state constructed from experimentally measured nucleon
structure functions and elastic form factors

- an interaction takes place if at the time of closest approach d. i of two
partons N
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- system evolves through a sequence of binary (242) elastic and

inelastic scatterings of partons and initial and final state radiations within
a leading-logarithmic approximation (2/4N)

- binary cross sections are calculated in leading order pQCD with either
a momentum cut-off or Debye screening to regularize IR behaviour

» guiding scales: initialization scale Qy, p; cut-off p, / Debye-mass _p
intrinsic k / saturation momentum Qg virtuality >




Initial State in the PCM |

the initial phase-space distribution can be constructed either from known
data on hadrons and nuclei or taken from a model of the initial state of
heavy-ion collisions (e.g. a Color-Glass-Condensate)

- for partons of flavour a in a nucleus the distribution_is given by:

Yy with the initial momentum dlstrlbutlon

\71/7 \"7 \/ \/ v ~ J T

(Q,: initial resolution scale, _# optional shadowing, g: opt. primordial k;)

Yy and the |n|t|al spatial distribution:
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« H: distribution of nucleons in nucleus (e.g. Fermi-Distribution)
- h,: distribution of partons in hadron (based on elastic form factor)
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Initial State Il;: Parton Momenta |

- flavour and x are sampled from
PDFs at an initial scale Q, and low
X cut-off X,

- initial k, is sampled from a
Gaussian of width Q,in case of no
initial state radiation

1/k, dN/d k, (1/GeV)
& @ 8 &

nn. s . - . i - s " -~
00 0.2 04 06 08 1.0 12 14 16 18 20

k; (GeV)



Binary Processes in the PCM |

» the total cross section for a binary collision is given by:
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with partial cross sections:

- now the probability of a particular channel is:

\/7 \7 \/

- finally, the momentum transfer & scattering angle are sampled via

\7 \v/ N
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- a common factor of r__2(Q?3)/s? etc.
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- further decomposition according to color flow



Scale Evolution and Branching |

* higher order corrections describing the evolution of the factorization
scale and branching processes are treated in the collinear (LLA)
approximation

- the differential cross section is modified by a factor of
\/ \/ "

for each initial state parton




Initial and final state radiation |

Probability for a branching is given in terms of the Sudakov form factors:
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space-like branchings:
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W Testing the PCM Kernel: p, distribution |

- the minijet cross section is given by:
AV A ’ \'7 \'7 A ~ ~" 1 s s T

p+p; Ecy=200 GeV
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p+p; Ecy=200 GeV
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-dynamic factorization scale
correction increases cross
section by ~40%

W " Corrections for Q, & Initial/Final Radiation

p+p; Ecy=200 GeV
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energy-density at y., is calculated from:

Au+Au; E; ;=200 AGeV
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*hints of transverse expansion?

Au+Au; Ecy=200 AGeV
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Collision Rates & Numbers |

Au+Au; Ecy=200 AGeV
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‘lifetime of interacting phase: ~ 3 fm/c

-partonic multiplication due to the initial & final state
radiation increases the collision rate by a factor of 4-10

Yy are time-scales long enough for thermalization?



Au+Au; Eqy=200 AGeV

Multiple Scattering and Radiation |

Au+Au; Ecyy=200 AGeV
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‘multiple scattering broadens
momentum distribution at
intermediate p, Pt

ydJet Quenching at p, > 5 GeV?
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-radiation enhances low p, domain
and leads to suppression at high



1/p, dN/dp, (GeV™)

Thermalization?

Au+Au; Ecy=200 AGeV
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spectrum exhibits thermal
behaviour for p, < 4 GeV

‘thermalization due to radiation
and rescattering?
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‘initial temperature estimated
from measured dN/dy and
Bjorken’s formula: 446 MeV



Elliptic Flow in VNI/BMS I
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Elliptic Flow in VNI/BMS I I

The following parameters may influence v, calculation:
* physics input:
- cut-off parameters p, & X, influence cross-section
- lack of soft, non-perturbative, processes
* analysis method:
- idealized reaction plane & averaging over events
* NO susceptibility for jet correlations

‘unscreened pQCD cross sections with a cut-off p,=1 GeV
are on the order of 0.4 mbarn — a factor of 10 too small for

generating sizable elliptic flow
YV, is soft, non-perturbative physics!




Novel Features in VNI/BMS |

- initialization in quantitative agreement with PDFs & virtualities

- proper treatment of renormalization scale in transport cross sections
- vastly improved algorithm for sampling t from d_/dt

* consistent treatment for propagation of space- & time-like partons
- proper treatment of p, generation in parton showers

- introduction of a fast cascade algorithm

* introduction of factorization scale correction in cross sections

- improved algorithm for the LPM effect

- possibility to simulate eikonal approximation

- incorporation of saturation physics

- output & documentation conforming to OSCAR standards



Limitations of the PCM Approach |

Fundamental Limitations:

* lack of coherence of initial state

* range of validity of the Boltzmann Equation

- parton saturation is input, not result of dynamics

- interference effects are included only schematically

- hadronization has to be modeled in an ad-hoc fashion

Limitations of present implementation (as of May 2002)
- lack of detailed balance: (no N A& 2 processes)

* no 2 A 1 processes involving space-like partons

- lack of selfconsistent medium corrections

- heavy quarks?



Future Directions ... |

The VNI/BMS approach provides an ideal framework for:

- study of event by event fluctuations

* investigating the detailed dynamics of jet-quenching

- study of medium modification of QCD processes

- studying the transition of a shattered Colour Glass to a QGP
- study of propagation & recombination of heavy quarks

* investigating models of hadronization

» dovetailing to hydrodynamics & hadronic cascades

* suggestions and collaborative endeavours on
these and related issues are most welcome!



The End



